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Delay Tolerance for Stable Stochastic Systems
and Extensions
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and Ji-Feng Zhang , Fellow, IEEE

Abstract—This article establishes a “robustness” type
result, namely, delay tolerance for stable stochastic sys-
tems under suitable conditions. We study the delay toler-
ance for stable stochastic systems and delayed feedback
controls of such systems, where the delay can be state-
dependent or induced by the sampling-data. First, we con-
sider systems with global Lipschitz continuous coefficients
and show that when the original stochastic system without
delay is pth moment exponentially stable, the system with
small delays is still pth moment exponentially stable. In
particular, when the pth moment exponential stability is
based on Lyapunov conditions, we can obtain explicit delay
bounds for moment exponential stability. Then, we consider
a class of stochastic systems with nonglobal Lipschitz con-
ditions and find a delay bound for almost sure and mean
square exponential stability. As extension of the stability
tolerance criteria, consensus, and tracking control of mul-
tiagent systems with measurement noises and nonuniform
delays are studied.

Index Terms—Delay, multiagent system, stability,
stochastic system.
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I. INTRODUCTION

THIS article presents an effort to address the important
question: How much delay can a stochastic system endures

so that the stability is still achieved. This, in fact, can be thought
of as a robustness consideration. The range of allowable delays
can be thought of as a “stability margin” in certain sense. Our
consideration stems from the fact that stochastic systems are
used frequently in the real-world applications ranging from
numerous dynamic systems in engineering, computer science,
and network science to population biology, epidemiology, and
economics [1]. While the study of stochastic systems has a long
history, one of the central issues drawing much attention in the
literature is stability [2]–[5], which offers challenges and oppor-
tunities to the automatic control theory [6]–[9]. With stochas-
tic perturbations, stability analysis involves various stochastic
stability concepts such as stability in probability, stability in
distribution, almost sure stability, and moment stability [3], [10].
This is different from the systems with deterministic distur-
bances in Hu et al. [11]. For many applications, delay is often
unavoidable. This together with stochastic perturbations leads
to the consideration of stochastic differential delay systems
(SDDSs) [3], [12], whose future state depends not only on
the present but also on the past history. Because stochastic
stability of such SDDSs is vital, much effort has been devoted
to the study; both Razumikhin methods and Lyapunov function
(or functional) methods are used for the stability analysis for
SDDSs. Using Razumikhin methods, moment asymptotic and/or
exponential stability were obtained [13]–[17], whereas using
Lyapunov function (or functional) methods, not only the moment
stability but also the almost sure stability were obtained. By the
Lyapunov function method, Mao [3] gave delay-independent
pth moment stability and obtained almost sure stability from
the moment exponential stability under linear growth condition.
Rakkiyappan et al. [18] established the moment stability condi-
tions in terms of linear matrix inequalities (LMIs) for uncertain
stochastic neural networks with delays. Gershon et al. [19] stud-
ied H∞ state-feedback control of stochastic delay systems using
Lyapunov functions and LMIs. Shaikhet [20] also introduced
many Lyapunov functionals to examine the stochastic stability
of different SDDSs. Using suitable Lyapunov functionals, Fei
et al. [21] established the delay-dependent moment stability of
the highly nonlinear hybrid stochastic system.

Although many important results have been obtained to date,
little is known about the delay tolerance for stable stochastic
systems. We consider the following stochastic system

dy(t) = f(y(t))dt+

d∑
i=1

gi(y(t))dwi(t), t ≥ t0 (1)
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with the initial data y(t0) = y0, f, gi : Rn → Rn,
f(0) = gi(0) = 0, w(t) = (w1(t), w2(t), . . . , wd(t))

T is a
d-dimensional standard Brownian motion. We first assume that
the stochastic system (1) (its trivial solution) is pth (p ≥ 2)
moment exponentially stable or almost surely exponentially
stable. That is, there are constants M > 0 and γ > 0, such that

E|y(t)|p ≤ ME|y0|pe−γt, or lim sup
t→∞

log |y(t)|
t

≤ −γ a.s.

The fundamental question is under what conditions the fol-
lowing delay system is still pth moment (or almost surely)
exponentially stable

dx(t) =

d1∑
i=1

fi(ϑi(xt))dt+
d∑

i=1

gi(θi(xt))dwi(t) (2)

where the sequence {fi}d1
i=1 is a decomposition of f

with fi : Rn → Rn, fi(0) = 0, and f(x) =
∑d1

i=1 fi(x),
xt = {x(t+ u) : u ∈ [−τ, 0]}, ϑi, θi : C([−τi, 0],Rn) → Rn

satisfies |ϑi(ϕ)| ∨ |θi(ϕ)| ≤ sups∈[−τi,0] |ϕ(s)| for ϕ ∈
C([−τ, 0],Rn), τi ≥ 0, τ = maxd1∨d

i=1 {τi}. Here, delay terms
can have various forms like the state-dependent delay studied
in [22], the deterministic delay (fixed or time-varying), and
random delay [23].

Considering the issue above leads to delay tolerance criteria.
1) First, it is important in the stability analysis of SDDSs.

In fact, Lyapunov functional is not unique for solving
the stability of SDDSs. To choose an appropriate Lya-
punov functional is a difficult work. Based on the delay
tolerance criteria, one can find the delay bound directly
without wasting time on trying to find suitable Lyapunov
functionals.

2) Second, it facilitates the design of delayed feedback
control for stochastic systems. With the delay tolerance
criteria, we do not need to change the control gain when
the delay appears and falls in an allowed region. In fact,
one only requires the stability of the delay-free system
and the structure of the delays.

3) Finally, it can produce the stability of a class of semidis-
crete stochastic systems. Most importantly, with the de-
lay tolerance criteria, we can obtain the design of the
sampled-data control and the explicit relationship be-
tween the sampling period and the systems parameters.

Prior to this article, the delay tolerance has been considered
mainly for the almost surely stable stochastic systems. Mo-
hammed and Scheutzow [24] and Scheutzow [25] considered the
almost sure exponential stability of the linear scalar stochastic
delay equation with pure diffusiondx(t) = σθ1(xt)dw1(t), σ >
0, and showed that the delay system is still almost sure stable for
sufficient small delay. Most recently, Mao et al. have engaged in
the study of almost sure stability of the general SDDSs [26] and
the associated switching cases [27]. These works are important
since they showed that almost surely stable system can be
tolerant with a small delay, where the small delay bound has been
revealed in [26] and [27] for the almost sure stability. One can
easily see from the references above, if the diffusion is not degen-
erate, then its delay can still contribute to the almost sure stabil-
ity, but this is not the case for degenerated diffusions. Hence, one
has to consider the stability without taking the positive role of
noises into consideration. A representative work in this direction
is Mao [28], where the fixed delay tolerance issues for the mean

square stable stochastic systems were investigated under the
global Lipschitz conditions. However, stability tolerance under
the general delays (time-vary or state-dependent) and general
Lyapunov conditions have not been examined. Moreover, the
issues under the nonglobal Lipschitz conditions have not been
well understood. This article fills in these gaps.

Inspired by the idea in [28], we study the delay tolerance for
moment or almost surely stable stochastic systems. According to
the different information about the delay-free systems, different
delay tolerance results are obtained. Under the global Lipschitz
condition, by assuming that we only know that the trivial solution
of the delay-free systems is pth moment exponentially stable,
we obtain a tolerance delay bound for the pth moment and
almost sure exponential stability. We derive a weaker delay
bound if the trivial solution of the delay-free system is moment
exponentially stable based on a Lyapunov condition. For such
results, the concrete form of the delay need not be known, where
the delays can be deterministic, random, or state-dependent.
Under nonglobal Lipschitz conditions, we consider the case with
time-varying delays. It will be proved that if the time-varying
delays are differentiable (or differentiable except at a sequence),
then exponentially stable stochastic system can still be tolerant
to time-varying delays with small derivatives. These results can
solve many control problems with delayed feedback control
without the global Lipschitz and linear growth conditions.

As an extension, the control of multiagent systems with
noises and time-varying nonuniform delays is investigated. The
delay tolerance results aim to solve the consensus and tracking
problem of multiagent systems under the multiplicative noises
and the nonuniform delays. This can be considered as a further
extension of our recent works [29], [30] from the uniform
fixed delays to the time-varying nonuniform delays. In fact,
the nonuniform delays for multiagent consensus have been
investigated intensively for deterministic models (see [31]–[35]
for example). The Lyapunov functionals with derivatives of the
states and characteristic methods are two important tools for
designing the consensus control and establishing the consensus
conditions. However, the two methods fail in the presence of
noises since the state of stochastic system is not differentiable
and the characteristic methods are difficult to be applied. To date,
little is known about the models with measurement noises and
nonuniform delays. With the delay tolerance results obtained in
this article, we have the ability to overcome the difficulty induced
by nonuniform delays and obtain the design of the consensus and
tracking protocol.

The rest of the article is arranged as follows. Section II
addresses the delay tolerance under the global Lipschitz assump-
tion, where the exponential stability condition and Lyapunov
condition are studied, respectively. Section III examines the
delay tolerance for the mean square and almost sure expo-
nential stability under the nonglobal Lipschitz and local linear
growth conditions. Section IV applies the delay tolerance idea
to study consensus and tracking control of multiagent systems
with nonuniform time-varying delays and measurement noises.
Section V concludes the paper with further remarks.

Notation: We work with the n-dimensional Euclidean space
Rn equipped with the Euclidean norm | · |. For a vector or a
matrix A, its transpose is denoted by AT . For a matrix A, denote
its trace norm by |A| =√

trace(ATA); for a symmetric matrix
A with real entries, denote by λmax(A) and λmin(A) the largest
and smallest eigenvalues, respectively. Use a ∨ b to denote
max{a, b} and a ∧ b to denote min{a, b}. For τ > 0, denote by
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C([−τ, 0];Rn) the family of all Rn-valued continuous functions
on the interval [−τ, 0]with the norm ‖ϕ‖C = supt∈[−τ,0] |ϕ(t)|.
Let (Ω,F,P ) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions. That is, it is right
continuous and increasing while F0 contains all P -null sets.

II. DELAY TOLERANCE UNDER GLOBAL

LIPSCHITZ CONDITIONS

In this section, we assume that the coefficients of (1) are
Lipschitz continuous.

Assumption II.1: Assume that f, g satisfy f(0) = g(0) = 0
and there exist positive constants K1 and K2i, such that

|f(x)− f(y)| ≤ K1|x− y|, |gi(x)− gi(y)| ≤ K2i|x− y|,

for all x, y ∈ Rn.
It is known that under Assumption II.1, the delay-free stochas-

tic system (1) admits a unique global solution. We also assume
that for each i, fi in the decomposition of f [see (2)] is Lipschitz
continuous.

Assumption II.2: Assume that the decomposition f(x) =∑d1

i=1 fi(x) is a Lipschitz decomposition, that is, each compo-
nent fi(x) satisfies |fi(x)− fi(y)| ≤ K1i|x− y|withK1i ≥ 0.

Remark II.1: Assumption II.2 under Assumption II.1 is easy
to verify. For example, if we consider the plant ẋ = Ax+Bu
with u = Kx, then the closed-loop system has the form ẋ =
Ax+BKx. So we can let f(x) = Ax+BKx, which falls into
the case of Assumption II.2. The corresponding issue can be
considered as that if the timely control can make the system
stable, then how about for the delayed control.

For the purpose of stability, assume that f(0) = fi(0) =
0, gj(0) = 0 for all i, j. This implies that each of the two stochas-
tic systems (1) and (2) admits a trivial solution, respectively.
Note that under the global Lipschitz assumptions above, the
moment exponential stability implies the almost sure exponen-
tial stability [3]. So in this section, we only focus on the pth
moment exponential stability. We consider the case p ≥ 2. For
the case p ∈ (0, 2), we can use the inequality (E|x(t)|p) 1

p ≤
(E|x(t)|2) 1

2 to obtain the pth (p ∈ (0, 2)) moment exponential
stability.

Remark II.2: The diffusion term (multiplicative noise) may
work positively for almost sure and pth (0 < p < 1) moment
stability (see [3], [36]) when the diffusion is nondegenerate.
Considering the models with nondegenerate diffusion excludes
many real models (for example, the double-integrator stochastic
systems in [37]). As a remedy, we consider more general models
without the requirement of diffusions to be nondegenerate. As a
result, our results are not related to that of the positive role played
by the diffusion for almost sure and pth (0 < p < 2) moment
stability in the existing literature. That is also the reason for us
to obtain the pth-moment exponential stability with 0 < p < 2
from pth-moment exponential stability with p ≥ 2. It is possible
to obtain small moment stability under weaker conditions, which
is more difficult to deal with and is to be considered in our future
work.

For the convenience of the reader, we recall the Itô for-
mula. Let Lp(R+;Rn) denote the family of all Rn-valued
measurable {Ft}-adapted processes f = {f(t)}t≥0, such that∫ T

0 |f(s)|pds < ∞ a.s. for every T > 0. Consider the following

Itô process

dX(t) = F (t)dt+

d∑
i=1

Gi(t)dwi(t)

where F (t) ∈ L1(R+;Rn) and F (t) ∈ L2(R+;Rn). Then for
any V ∈ C2,1(Rn × R+;R+), we have the following Itô for-
mula [3]

V (X(t), t) = V (X(t0), t0) +

∫ t

t0

SV (X(s), s)ds

+

d∑
i=1

∫ t

t0

Vx(X(s), s)Gi(s)dwi(s)

where SV (x, t) = ∂V (x,t)
∂t + 1

2

∑d
i=1 Gi(t)

TVxx(x, t)Gi(t) +

Vx(x, t)F (t),Vx(x, t) = (∂V (x,t)
∂x1

, . . . , ∂V (x,t)
∂xn

), and Vxx(x, t)

= (∂
2V (x)

∂xj∂xl
). Here, we need to remark that S is not the usual

operator associated with the stochastic differential equations
but is merely a symbol; likewise SV (x, t) is just a notation.
However, for stochastic system (1), we can obtain the true
operator L : C2,1(Rn × R+;R+) → R+ associated with the
Itô diffusion

LV (x, t) =
∂V (x, t)

∂t
+ Vx(x, t)f(x)

+
1

2

d∑
i=1

gTi (x)Vxx(x, t)gi(x). (3)

In what follows, we first consider the delay tolerance based
on the moment exponential stability. In this case, we may obtain
a delay bound for the delay system (2) to ensure moment
exponential stability. However, this delay bound might be too
conservative since we only know that the delay-free system
(1) is moment exponentially stable. To proceed, we study the
delay tolerance issue under Lyapunov conditions imposed on
(3), which may guarantee the moment exponential stability of
delay-free systems. In this case, we can get a relaxed delay bound
for system (2) to ensure moment exponential stability.

A. Delay Tolerance Based on the Moment
Exponential Stability

DefineD(ϕ) = sup−τ≤u≤0 |ϕ(u)− ϕ(0)|.The following as-
sumption is required and is easily verifiable. For example, the
functional ϑi(ϕ) = θj(ϕ) = ϕ(−τ) falls in this assumption.

Assumption II.3: Assume that for i = 1, 2, |ϑi(ϕ)− ϑi(φ)| ∨
|θi(ϕ)− θi(φ)| ≤ ‖ϕ− φ‖ and |θi(ϕ)− ϕ(0)| ≤ D(ϕ).

Before presenting the delay bound for the stability of the
stochastic delay system (2), we present some lemmas. The
first lemma provides boundedness estimates of the solution to
stochastic delay system (2).

Lemma II.1: Let Assumptions II.1, II.2, and II.3 hold, ξ ∈
Lp
F0
(Ω;C([−τ, 0];Rn)), and write x(t) = x(t; t0, ξ). Then we

have the following estimates

E( sup
t0≤u≤t

|x(u)|p) ≤ 3E‖xt0‖peγ1(t−t0) (4)

and

E|D(xt+τ )|p ≤ M1(τ)E‖xt0‖peγ1(t+τ−t0) (5)
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where γ1 = 2p(
∑d1

i=1 K1i +
∑d

i=1
(32d+1)p−1

2 K2
2i),M1(τ) =

22p+1(τpdp−1
1

∑d1

i=1 K
p
1i + dp−1

∑d
i=1 K

p
2iτ

p/2p0), p0 =

[pp+1/2(p− 1)p−1]p/2.
Proof: By the Itô formula, we have

|x(t)|p = |x(t0)|p + p

∫ t

t0

[|x(s)|p−2x(s)T
d1∑
i=1

fi(ϑi(xs))

+ p
d∑

i=1

∫ t

t0

p− 2

2
|x(s)|p−4|x(s)T gi(θi(xs))|2ds

+
1

2
|x(s)|p−2

d∑
i=1

|gi(θi(xs))|2]ds+M(t) (6)

where M(t) =
∑d

i=1 mi(t), mi(t) =
∫ t

t0
|x(s)|p−2x(s)T

gi(θi(xs))dwi(s). Let Ht
t0

= E(supt0≤u≤t |x(u)|p). Then,
from Assumptions II.1–II.3 and the inequality xαyβ ≤
α

α+βx
α+β + β

α+β y
α+β for x, y, α, β > 0, we have

Ht
t0

≤ E|x(t0)|p + E( sup
t0≤s≤t

M(s))

+ p

∫ t

t0

[
d1∑
i=1

K1iE(|x(s)|p−1|ϑi(xs)|)

+

d∑
i=1

K2
2i

p− 1

2
E(|x(s)|p−2|θi(xs)|2)

]
ds

≤ E|x(t0)|p + C1

∫ t

t0

Hs
t0−τds+

d∑
i=1

E( sup
t0≤s≤t

mi(s))

(7)

where C1 = p(
∑d1

i=1 K1i +
1
2

∑d
i=1 K

2
2i(p− 1)). By the

Burkholder–Davis–Gundy inequality, we have

E( sup
t0≤s≤t

mi(s))

≤ p4
√
2

(∫ t

t0

|x(s)|2p−4|x(s)T gi(θi(xs))|2ds
)1/2

≤ 4
√
2pK2

2iE

(
sup

t0≤u≤t
|x(u)|p

∫ t

t0

|x(s)|p−2|θi(xs)|2ds
)1/2

≤ 0.5
1

d
E( sup

t0≤u≤t
|x(u)|p) + 16p2dK2

2i

∫ t

t0

Hs
t0−τds.

Substituting this into (7) yields Ht
t0
≤2E|x(t0)|p+

γ1
∫ t

t0
Hs

t0−τds. Note that Ht
t0−τ ≤ Ht0

t0−τ +Ht
t0

≤
3E‖xt0‖p + γ1

∫ t

t0
Hs

t0−τds. The Gronwall inequality yields

E(supt0−τ≤u≤t |x(u)|p) ≤ 3E‖xt0‖peγ1(t−t0). Hence, the
desired assertion (4) follows. By the Hölder inequality and the
Burkholder–Davis–Gundy inequality, we get

E( sup
0≤u≤τ

|x(t+ u)− x(t)|p)

≤ (2d1)
p−1τp−1

d1∑
i=1

Kp
1i

∫ t+τ

t

E|ϑi(xs)|pds

+ (2d)p−1p0

d∑
i=1

E

(∫ t+τ

t

|gi(θi(xs))|2ds
)p/2

≤ C2

∫ t+τ

t

E( sup
s−τ≤u≤s

|x(u)|p)ds

≤ 3τC2E‖xt0‖peγ1(t+τ−t0) (8)

where C2=(2d1)
p−1τp−1

∑d1

i=1 K
p
1i+(2d)p−1τp/2−1p0

∑d
i=1

Kp
2i, p0 = [pp+1/2(p− 1)p−1]p/2. This together with the defi-

nition of D(xt) gives

E|D(xt+τ )|p = E( sup
−τ≤u≤0

|x(t+ τ + u)− x(t+ τ)|p)

≤ 2p−1E|x(t+ τ)− x(t)|p

+ 2p−1E( sup
0≤u≤τ

|x(t+ u)− x(t)|p)

≤ M1(τ)E‖xt0‖peγ1(t+τ−t0).

That is, the desired assertion (5) follows. �
In this lemma, we obtain the moment estimate of

E(supt0−τ≤u≤t |x(u)|p) with the exponent γ1, and then based
on this estimate, we get estimate (5) of E|D(xt+τ )|p. Here,
we remark that the exponent γ1 for E|D(xt+τ )|p can be es-
timated more accurately if the functionals {ϑi, θi}i=1,2 sat-
isfy E|ϑi(ϕ)|p ∨ E|θi(ϕ)|p ≤ sup−τ≤u≤0 E|ϕ(u)|p for all ϕ ∈
Lp
F0
(Ω;C([−τ, 0];Rn))(for example θi(ϕ) = ϕ(−τ)). This is

summarized in the following lemma.
Lemma II.2: Let Assumptions II.1 and II.2 hold,

ξ ∈ Lp
F0
(Ω;C([−τ, 0];Rn)), write x(t) = x(t; t0, ξ), and

assume E|ϑi(ϕ)|p ∨ E|θi(ϕ)|p ≤ sup−τ≤u≤0 E|ϕ(u)|p for
all ϕ ∈ Lp

F0
(Ω;C([−τ, 0];Rn)). Then we have the following

estimates E|x(t)|p ≤ 2E‖xt0‖peγ2(t−t0),E|D(xt+τ )|p ≤
M1(τ)E‖xt0‖peγ2(t+τ−t0), where γ2 = p(

∑d1

i=1 K1i +
p−1
2

∑d
i=1 K

2
2i).

Proof: From (6), we can obtain that

E|x(t)|p ≤ E|x(t0)|p + C3

∫ t

t0

E|x(s)|pds

+

d1∑
i=1

K1i

∫ t

t0

E|θi(xs)|pds

+
p− 1

2

d∑
i=1

K2
2i

∫ t

t0

E|θ2(xs)|pds

≤ E|x(t0)|p + C4

∫ t

t0

sup
t0−τ≤u≤s

E|x(u)|pds

where C3 = (p− 1)(
∑d1

i=1 K1i +
1
2

∑d
i=1 K

2
2i(p− 2)) and

C4 = p(
∑d1

i=1 K1i +
p−1
2

∑d
i=1 K

2
2i). Therefore, the Gronwall

inequality leads to the desired assertion. �
The following lemma produces the estimate of the error

e(t) := x(t)− y(t).
Lemma II.3: Let Assumptions II.1, II.2, and II.3 hold, ξ ∈

Lp
F0
(Ω;C([−τ, 0];Rn)), and write x(t) = x(t; t0, ξ). Then, we

have

E|e(t)|p ≤ J(τ, t− t0)E‖xt0‖p
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where J(τ, z) = (
∑d1

i=1 K1i + 2(p− 1)
∑d

i=1 K
2
2i) eM3(z−τ)

M1

γ1
[eγ1z − eγ1τ ] with M1(τ) and γ1 defined in Lemma II.1,

M3 = 2(p− 1)2
∑d

i=1 K
2
2i + (2p− 1)

∑d1

i=1 K1i.
Proof: It is easy to see that de(t) =

∑d1

i=1[fi(ϑi(xt)))−
fi(y(t))]dt+

∑d
i=1[gi(θi(xt))− gi(y(t))]dw(t).Apply the Itô

formula and Assumptions II.1 and II.2 yields

E|e(t)|p ≤ p

d1∑
i=1

K1i

∫ t

t0+τ

E(|e(s)|p−1|ϑi(xs)− y(s)|)ds

+
p(p− 1)

2

d∑
i=1

K2
2i

×
∫ t

t0+τ

E(|e(s)|p−2|θi(xs)− y(s)|2)ds

≤ p

(
d1∑
i=1

K1i + (p− 1)
d∑

i=1

K2
2i

)∫ t

t0+τ

E|e(s)|pds

+ p

d1∑
i=1

K1i

∫ t

t0+τ

E(|e(s)|p−1|ϑi(xs)− x(s)|)ds

+ p(p− 1)
d∑

i=1

K2
2i

×
∫ t

t0+τ

E(|e(s)|p−2|θi(xs)− x(s)|2)ds

≤ M3

∫ t

t0+τ

E|e(s)|pds+
d1∑
i=1

K1i

×
∫ t

t0+τ

E|ϑi(xs)− x(s)|pds

+ 2(p− 1)

d∑
i=1

K2
2i

∫ t

t0+τ

E|θi(xs)− x(s)|pds.

Applying the Gronwall inequality and Lemma II.1 lead to

E|e(t)|p ≤ eM3(t−t0−τ)

(
d1∑
i=1

K1i

∫ t

t0+τ

E|ϑi(xs)− x(s)|pds

+2(p− 1)

d∑
i=1

K2
2i

∫ t

t0+τ

E|θi(xs)− x(s)|pds
)

≤ J(τ, t− t0)E‖xt0‖p.

�
Theorem II.1: Let Assumptions II.1, II.2, and II.3 hold.

Assume that the original system (1) is pth moment exponentially
stable with E|y(t)|p ≤ ME|y0|pe−γt for M,γ > 0. Then
there is a positive number τ ∗, such that the delay system
(2) is pth moment exponentially stable for any τ < τ ∗.
In fact, τ ∗ can be determined using τ ∗ = supε∈(0,1){τ >

0|2p−1M1(τ)e
γ1(τ+h) + εeγ1τ + 4p−1J(τ, τ + h)))− 1 =

0}, where h = h(ε) = log( ε
3·4p−1M ) for ε ∈ (0, 1).

Proof: We first prove that τ ∗ is well defined. For any fixed
ε ∈ (0, 1), define

Q(τ) := 2p−1M1(τ)e
γ1(τ+h) + εeγ1τ

+ 4p−1J(τ, τ + h)))− 1.

Note that Q(− log ε
γ1

) > 0, limτ→0 = ε− 1 < 0, and Q′(τ) > 0.
Hence, there is a unique root τ(ε) > 0 such that Q(τ ∗) = 0, and
τ ∗ = supε∈(0,1) τ(ε) is well defined.

Let ε0 = arc supε∈(0,1) τ(ε), h = h(ε0), and τ < τ ∗. Write
x(t; t0, ξ) := x(t) for all t ≥ t0 and y(t0 + τ + h; t0 +
τ, x(t0 + τ)) = y(t0 + τ + h). Bear in mind that

E|y(t0 + τ + h)|p ≤ ME|x(t0 + τ)|pe−γh.

This together with Lemma II.1 implies E|y(t0 + τ + h)|p ≤
3ME‖ξ‖peγ1τ−γh. It follows from Lemma II.3 that

E|x(t0 + τ + h)|p ≤ 2p−1E|x(t0 + τ + h)− y(t0 + τ + h)|p

+ 2p−1E|y(t0 + τ + h)|p

≤ 2p−1(3Meγ1τ−γh + J(τ, τ + h))E‖ξ‖p.
Hence

E‖xt0+τ+h‖p ≤ 2p−1E|D(xt0+τ+h|p

+ 2p−1E|x(t0 + τ + h)|p
≤ J0(τ)E‖ξ‖p (9)

where J0(τ) = 2p−1M1(τ)e
γ1(τ+h) + 4p−1(3Meγ1τ−γh +

J(τ, τ + h))). From the definitions of τ and h, J0(τ) < 1.
Denote γ0 = − logJ0(τ)

τ+h . Then, it follows from (9) that

E‖xt0+τ+h‖p ≤ e−γ0(τ+h)E‖ξ‖p. Then similar to the
derivation in [27], we can obtain that for k = 1, 2, . . . ,

E‖xt0+k(τ+h)‖p ≤ e−γ0k(τ+h)E‖ξ‖p.
This implies the pth moment exponential stability of the delay
system (2). �

Theorem II.1 indicates that the moment exponentially stable
stochastic system can be tolerant with a small delay with a
bound τ ∗. It is not required for us to know the exact stability
conditions on the coefficients f(x) and {gi(x)}di=1. The more
information about the systems we have, the more accurate results
we would get. So it is a natural question that if we know some
additional information about the coefficients f , {gi(x)}di=1, and
their decomposition, can we improve the delay bound obtained
in Theorem II.1? For example, all the information about the
coefficients is available for the following linear system

dy(t) = −μy(t)dt+ σy(t)dw(t), μ, σ > 0. (10)

Most importantly for the pth moment stability analysis, one can
resort to the Lyapunov function like V (y) = |y|p and derive

LV (y) = −p(μ− p− 1

2
σ2)|y|p (11)

which is a key in moment stability analysis and produces
E|y(t)|p = |y(0)|pe−p(μ− p−1

2 σ2)t. That is, equation (10) is pth
moment exponentially stable for p < (2μ+ σ2)/σ2. We hope
to find a delay bound τ better than that in Theorem II.1, such
that the following delay system is still pth moment exponentially
stable

dx(t) = −μθ1(xt)dt+ σθ2(xt)dw(t), x0 = ξ (12)

where w(t) is a scalar Brownian motion. That is the attention of
the following subsection.
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B. Delay Tolerance Based on Lyapunov Conditions

In this section, we assume the Lyapunov stability condition
like (11) as a precondition and examine the delay tolerance. The
following Lyapunov stability result is classical (see [3]).

Theorem II.2: If there exist a function V (x) ∈ C2(Rn;R+)
and two positive constants c1 and c2, such that

1) c1|x|p ≤ V (x) ≤ c2|x|p
2) LV (x) ≤ −λV (x) for some fixed λ > 0.

Then stochastic system (1) is pth moment exponentially
stable.

To examine the delay tolerance under the above Lyapunov
conditions, the following integral version of the Halanay in-
equality [38] will be used. Then the delay tolerance under the
Lyapunov function is given in Theorem II.3.

Lemma II.4: Consider

v(t) ≤ ‖vt0‖e−γ0(t−t0)f(t) +K

∫ t

t0

e−γ0(t−s) sup
u∈[s−τ,s]

v(u)ds,

where t ≥ t0, γ0 > 0,K > 0, and f(t) is a nondecreasing pos-
itive function. If γ0 > K, then there exist positive constants γ
and K, such that

v(t) ≤ ‖vt0‖Ke−γ(t−t0)f(t)

where γ is the unique root of the equation γ = −γ0 +Keγτ .
Theorem II.3: Let Assumptions II.1 and II.2 hold,

E|ϑi(ϕ)− x|2 ∨ E|θi(ϕ)− x|2 ≤ supu∈[0,τ ] E|x− ϕ(−u)|2
for ϕ ∈ Lp

F0
(Ω;C([−τ, 0];Rn)) and x ∈ Rn. Assume that

there exist a function V (x) ∈ C2(Rn;R+) and constants
p ≥ 2, {ci}4i=1 satisfying conditions 1), 2), and

3) |Vx(x)| ≤ c3|x|p−1

4) |Vxx(x)| ≤ c4|x|p−2.
Then the delay system (2) is pth moment exponentially stable

if
C5(τ) < λ (13)

where C5(τ) = 2
√
p−1
pc1

2
p−1
2 (τpdp−1

1

∑d1

i=1 K
p
1i + τp/2dp−1p0∑d

i=1 K
p
2i)

1/2(c3
∑d1

i=1 K1i + c4
∑d

i=1 K
2
2i), p0 =

[pp+1/2(p− 1)p−1]p/2.
Proof: Applying the Itô formula yields

deγtV (x(t))

= γeγtV (x(t))dt+

d1∑
i=1

eγtVx(x(t))fi(ϑi(xt))dt+ dM(t)

+
1

2

d∑
i=1

gi(θi(xt))
TVxx(x(t))gi(θi(xt))dt (14)

where M(t) =
∑d

i=1

∫ t

0 eγsVx(x(s))gi(θi(xs)dwi(s) is a mar-
tingale with EM(t) = 0 because of the global Lipschitz condi-
tions. Note that
Vx(x(s))fi(ϑi(xs))

= Vx(x(s))f(x(s)) + Vx(x(s))[fi(ϑi(xs))− fi(x(s))]
(15)

and
gi(θi(xs))

TVxx(x(s))gi(θi(xs))

= gi(x(s))
TVxx(x(s))gi(x(s))

+ gi(θi(xs))
TVxx(x(s))[g(θi(xs))− g(x(s))]

+ [gi(θi(xs))− g(x(s))]TVxx(x(s))gi(x(s)). (16)

Then, substituting (15) and (16) into (14) and taking expecta-
tions, we get from condition 2)

eγtEV (x(t)) ≤ EV (x(0)) + (γ − λ)

∫ t

0

eγsEV (x(s))ds

+

∫ t

0

eγsE

[
d1∑
i=1

Θ1i(s) +

d∑
i=1

Θ2i(s)

]
dt

(17)

where Θ1i(s) = Vx(x(s))[fi(ϑi(xs))− fi(x(s))] and
Θ2i(s) = 0.5gi(θi(xs))

TVxx(x(s))[g(θi(xs))− gi(x(s))] +
0.5[gi(θi(xs))− gi(x(s))]

TVxx(x(s))gi(x(s)). It follows
that α(xyp−2 z

α ) ≤ 1
pα(2x

p + (p− 2)yp) + 1
αp−1 z

p, for any
x, y, z, α > 0, and we have

EΘ1i(s) ≤ c3K1iE(|x(s)|p−1|ϑi(xs)− x(s)|)

≤ c3K1i

(
α
p− 1

p
E|x(s)|p + 1

pα
E|ϑi(xs)− x(s)|p

)
(18)

and

EΘ2i(t) ≤ c4
2
K2

2i

(
α
1

p
E|θi(xs)|p + α

p− 2

p
E|x(s)|p

+
1

pα
E|θi(xs)− x(s)|p

)
+

c4
2
K2

2i

(
α
p− 1

p
E|x(s)|p

+
1

pα
E|θi(xs)− x(s)|p

)
. (19)

Note that E|ϑi(xs)− x(s)|2∨E|θi(xs)− x(s)|2≤supu∈[0,τ ]
E|x(s)− x(s− u)|2. Similarly to (8), we have that for any
u ∈ [0, τ ]

E|x(t+ u)− x(t)|p

≤ (2d1τ)
p−1

d1∑
i=1

Kp
1i

∫ t+u

t

E|ϑi(xs)|pds

+ (2d)p−1τp/2−1p0

d∑
i=1

Kp
2i

∫ t+u

t

E|θi(xs)|pds

≤ C6(τ) sup
u∈[t−2τ,t]

E|x(u)|p (20)

where C6(τ)=2p−1(τpdp−1
1

∑d1

i=1 K
p
1i+τp/2dp−1p0

∑d
i=1

Kp
2i). Let α =

√
C6(τ)
p−1 . Combining (18), (19), and (20), we

have

EΘ1i(t) ≤ 1

p
c3K1i

[
(p− 1)α+

C6(τ)

α

]
sup

u∈[t−2τ,t]

E|x(u)|2

≤ 2

√
p− 1

pc1

√
C6(τ)c3K1i sup

u∈[t−2τ,t]

EV (x(u))

and

EΘ2i(t) ≤ 1

p
c4K

2
2i

[
(p− 1)α+

C6(τ)

α

]
sup

u∈[t−2τ,t]

E|x(u)|2

≤ 2

√
p− 1

pc1

√
C6(τ)c4K

2
2i sup

u∈[t−2τ,t]

EV (x(u)).
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This together with (17) yields

eγtEV (x(t)) ≤ EV (x(0)) + (γ − λ)

∫ t

0

eγsEV (x(s))ds

+ C5(τ)

∫ t

0

eγs sup
u∈[s−3τ,s]

EV (x(u))ds,

(21)

where C5(τ)=2
√
p−1
pc1

√
C6(τ)(c3

∑d1

i=1K1i+c4
∑d

i=1K
2
2i).

Let γ = λ. Then the inequality (21) can be rewrit-
ten as EV (x(t)) ≤ e−λtEV (x(0)) + C5(τ)

∫ t

0 e−λ(t−s)

supu∈[s−3τ,s] EV (x(u))ds. Note that condition (13) implies
λ > C5(τ). Then by the integral version of Halanay inequality
(Lemma II.4), there exist M0 and η, such that

E|x(t)|p ≤ M0 sup
θ∈[−τ,0]

E|x(θ)|2e−ηt

where η is the unique root of the following equation η = −λ +
C5(τ)e

3ητ . Therefore, the desired assertion follows. �
In Theorem II.3, we add two additional conditions 3) and 4) to

get the delay tolerance. One may question whether there exists
a Lyapunov function satisfying the two conditions. In fact, the
classical Lyapunov function V (x) = (xTPx)p/2 with P > 0
satisfies these conditions with c1 = λmin(P )p/2 and ci = |P |p/2
for i = 2, 3, 4, and condition 2) in Theorem II.2 has the form

LV (x) = p(xTPx)p/2−1

[
xT f(x) +

1

2

d∑
i=1

gi(x)
TPgi(x)

]

+ p
(p
2
− 1

)
(xTPx)p/2−1

d∑
i=1

|xTPgi(x)|2

≤ − λ(xTPx)p/2. (22)

Moreover, we have the following corollary based on (22) for
p = 2.

Corollary II.1: Assume that there exists a positive def-
inite matrix P , such that (22) holds for p = 2. Then
delay system (2) is mean square exponentially stable

if
√
2(τ2d1

∑d1

i=1 K
2
1i + τdc2

∑d
i=1 K

2
2i)(

∑d1

i=1 K1i +
∑d

i=1

K2
2i)

|P |
λmin(P ) < λ.

Now, for the delay tolerance concerning (10) and (12), we can
obtain from Theorem II.3 that if τ satisfies

2

√
p− 1

p

√
2τpμp + 4τp/2σp(μ+ σ2) < p

(
μ− p− 1

2
σ2

)
,

then delay system (12) is still pth moment exponentially stable.
Especially, if p = 2, then the mean square stable system (10)
can tolerate a delay

τ <

√
4σ4 + 2μ2( 2μ−σ2

μ+σ2 )2 − 2σ2

μ2

such that the delay system (12) is still mean square exponentially
stable. Hence, Theorem II.3 under Lyapunov stability conditions
is more powerful in solving delay tolerance.

Remark II.3: Theorems II.1 and II.3 can be extended to the
case with Markovian switching within a finite number of states.
In fact, for the hybrid case, we only need to change the Lyapunov
functionV (x) to the switched Lyapunov functionV (x, i). In this
case, the term

∑m
j=1 γijV (x, j) will be added into the operator

LV , where m is the number of states of a Markov chain r(t)

with the state space S = {1, 2 . . . ,m}, and Γ = [γij ]m×m is
generator of the Markov chain r(t). It is also interesting to extend
current results to the semi-Markov and singular stochastic sys-
tems in [39], which made a good contribution to extend the slide
model control from deterministic systems to the semi-Markov
and singular stochastic versions.

Remark II.4: Note that the above results do not require the
concrete form of the delay map ϑi and θi. In fact, these maps
can include many types of delays. For example, the delay can
be state-dependent like θi(xt) = x(t− τ |x(t−τ)|2

1+|x(t−τ)|2 ), and state-
independent like θi(xt) = x(t− τi(t)), where τi(t) is allowed
to be not smooth. The nonsmooth delay can be used to describe
the delay induced by the sampled data, where the delay τi(t) =
t− tk for t ∈ [tk, tk+1), {tk}∞k=1 are the sampling times. In this
case, we can see that the sampled-data control problem falls in
the delay tolerance issue. For deterministic systems, many works
have contributed to this issue [40]. For stochastic systems, only
a few works have been achieved due to the nondifferentiability
of the solution leading to the failure of many methods for the
deterministic systems. Mao and his coauthors [41], [42] proved
that the sampled-data control for stochastic system is applicable
for sufficient small sampling period. You et al. [43] extended
these results to get a better delay bound under the constant
period sampling. The results obtained in this article remove
the assumption of constant period sampling and introduce some
explicit conditions on time-varying sampling period.

For deterministic delay systems, the affine Bessel–Legendre
inequality [44] and Wirtinger’s inequality [45] can be used to
get the stability analysis. However, these methods cannot be
extended to the stochastic version since these methods involve
the derivatives of the state and the state of stochastic system is
not differentiable. Note that for stochastic systems, there seems
to be no evidence that the Lyapunov functional is better than
Lyapunov function. Moreover, one cannot design a Lyapunov
functional without knowledge of the form of the delays. So the
above analysis takes the Lyapunov function rather than Lya-
punov functional for the stability analysis for the delay system
(2). Here, the Lyapunov function is from the stability analysis
of the delay-free systems.

Note that all the delay tolerance results are based on the
global Lipschitz conditions. One may question whether the
global Lipschitz assumption can be relaxed. At this point, we
do not have a way to relax this assumption for the case above
without the knowledge of the concrete form and property of the
delays. However, if the delay terms have the forms ϑi(xt) =
θi(xt) = x(t− τi(t)) and {τi(t)}i are differentiable except for
the discrete time sequence {ti}∞i=1, ti ≤ ti+1, limi→∞ ti = ∞,
the delay tolerance still holds under a class of non-Lipschitz
conditions, which is the focus of the next section.

III. DELAY TOLERANCE UNDER NONGLOBAL

LIPSCHITZ CONDITIONS

In this section, we study the delay tolerance for the exponential
stability under nonglobal Lipschitz condition.

Assumption III.1: Assume that f, g satisfy f(0) = gi(0) = 0
and for each j > 0, there exist positive constants Hj , such that

|f(x)− f(y)| ∨ |gi(x)− gi(y)| ≤ Hj |x− y|
for all x, y ∈ Rn with |x| ∨ |y| < j.

We also assume that the drift f contains a non-Lipschitz part
but the delay must not appear in non-Lipschitz term. That is,
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under the decomposition f(x) =
∑d

i=0 fi(x) with f0(·) being
non-Lipschitz continuous, we consider the following delay sys-
tem

dx(t) =

[
f0(x(t)) +

d1∑
i=1

fi(x(t− τi(t)))

]
dt

+
d∑

i=1

gi(x(t− τi(t)))dwi(t) (23)

where {τi(t)} are time-varying delays and fi, gi : Rn → Rn

are continuous functions. We make the following assumptions
on these delays and functions.

Assumption III.2: Each τi(t) ∈ [0, τ ] is differentiable on
[tk, tk+1) for k = 1, 2, . . . with the derivative |τ̇i(t)| ≤ κ < 1
for certain κ > 0.

Assumption III.3: Assume that all the coefficients in (23) are
local Lipschitz continuous, and there exist a matrix P > 0 and
some constants μ0,K1, {K1i} > 0, p > 1, and β, β1, {σ1i},
{σ2i} ≥ 0, such that

2xTPf(x) ≤ −μ0|x|2 − β|x|p+1

gi(x)
TPgi(x) ≤ σ1i|x|2 + σ2i|x|p+1, i = 1, . . . , d

|f(x)| ≤ K1|x|+ β1|x|p
|fi(x)| ≤ K1i|x|, i = 1, . . . , d1.

Remark III.1: Note that the general diffusion without the
nondegenerate property may not contribute to the stability. In
this case, high-order term producing −β|x|p+1 in the drift is
required to suppress the growth induced by the high-order term
in the diffusion. Hence, high-order terms in the drift have to
contribute positively to the stability. In fact, without such con-
dition, the corresponding system may be unstable. To illustrate,
consider the deterministic system dx(t) = (−x(t) + x3(t))dt,
which satisfies 2xT f(x) = −2|x|2 + 2|x|4. Then it is easy to
see that this system cannot tend to the trivial solution. Moreover,
the similar conditions in Assumption III.3 were frequently used
(see, for example [21]).

Let λ = μ0 −
∑d

i=1 σ1i > 0 and λ1 = β −∑d
i=1 σ2i >

0. Note that Assumption III.3 implies 2xTPf(x) +∑d
i=1 g

T
i (x)Pgi(x) ≤ −λ|x|2 − λ1|x|1+p. It follows from [3]

that the trivial solution of the delay-free system is almost
surely and mean square exponentially stable if λ > 0, λ1 > 0.
Before giving the stability analysis of the delay system, we first
examine the regularity of the delay system (23).

Theorem III.1: Let Assumptions III.1, III.2, and III.3 hold
with λ > 0 and λ1 > 0. If

d1∑
i=1

K1iτ < 1 (24)

J10 := λ − |P |
(

d1∑
i=1

K2
1i + d1K

2
1

)
τ +H(κ)κ > 0 (25)

J20 := λ1 −
(
2|P |β1τ

d1∑
i=1

K1i +
κ

1− κ

d∑
i=1

σ2i

)
> 0 (26)

where H(κ) = |P |(d1
∑d1

i=1 K
2
1i + d1 +

1+d1τ
1−κ

∑d1

i=1 K
2
1i) +

1
1−κ

∑d
i=1 σ1i. Then delay system (23) admits a unique global

solution.

Proof: Note that the delay system (23) admits a unique local
solution on t ∈ [−τ, ρe) under Assumption III.3, where ρe is the
explosion time for the solution x(t). To show that this solution
is in fact global, we need only prove ρe = ∞ a.s. Let z(t) =
x(t) +

∑d1

i=1

∫ t

t−τi(t)
fi(x(s))ds. Then we have

dz(t) =

[
f(x(t)) +

d1∑
i=1

τ̇i(t)fi(x(t− τi(t)))

]
dt

+
d∑

i=1

gi(x(t− τi(t)))dwi(t)

=: F (t)dt+

d∑
i=1

Gi(t)dwi(t). (27)

Hence, z(t) can be considered as an Itô process. We first prove
that the explosion times for z(t) and x(t) are equal. Note that∑d1

i=1 K1iτ < 1 and

|x(t)| ≤ |z(t)|+
d1∑
i=1

∫ t

t−τi(t)

|fi(x(s))|ds

≤ |z(t)|+ τ

d1∑
i=1

K1i sup
t−τ≤s≤t

|x(s)|

which implies

|x(t)| ≤ sup
0≤s≤t

|x(s)| ≤ 1

1− τ
∑d1

i=1 K1i

sup
0≤s≤t

|z(s)|+ C0

where C0 =
τ
∑d1

i=1 K1i

1−τ
∑d1

i=1 K1i

sup−τ≤s≤0 |x(s)|. If we have an ex-

plosion time for z(t), denoted by ρze, then we must have
ρze ≤ ρe. Note also that

|z(t)| ≤ |x(t)|+ τ

d1∑
i=1

K1i sup
t−τ≤s≤t

|x(s)|

≤
(
1 + τ

d1∑
i=1

K1i

)
sup

t−τ≤s≤t
|x(s)|.

This implies ρze ≥ ρe. Hence, ρze = ρe. For each k > |z(0)|,
define the stopping time ρk = inf{t ∈ [0, ρe) : |z(t)| ≥ k}.
Clearly, ρk is increasing as k → ∞ and ρk → ρ∞ ≤ ρze = ρe
a.s. If we can show ρ∞ = ∞ a.s., then ρe = ∞, which implies
that the solution x(t) is global. Define θi(xt) = x(t− τi(t)).
Consider the Itô process (27) and introduce a Lyapunov function

V1(x) = xTPx.

Applying the Itô formula, we have

dV1(z(t)) = SV1(z(t), t)dt+ dM(t) (28)

where M(t) =
∑d

i=1

∫ t

0 2zT (s)Pgi(θi(xs))dwi(s) and

SV1(z(t), t)

= 2z(t)TP

(
f(x(t)) +

d1∑
i=1

τ̇i(t)fi(θi(xt))

)

+

d∑
j=1

gTj (θj(xt))PgTj (θj(xt))
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= 2x(t)TPf(x(t)) +
d∑

j=1

gTj (θj(xt))PgTj (θj(xt))

+ 2x(t)TP

d1∑
i=1

τ̇i(t)fi(θi(xt))

+ 2

d1∑
i=1

∫ t

t−τi(t)

fi(x(s))
T dsPf(x(t))

+ 2

d1∑
i=1

∫ t

t−τi(t)

fi(x(s))
T dsP

d∑
i=1

τ̇i(t)fi(θi(xt))

=: 2x(t)TPf(x(t)) + J1(t) + J2(t) + J3(t) + J4(t)
(29)

where t ∈ [ti, ti+1), i = 0, 1, 2 . . . By the inequality 2xT y ≤
ε|x|2 + 1

ε |y|2, ε > 0, x ∈ Rn, we can obtain

J2(t) ≤ |P |
d1∑
i=1

τ̇i(t)
(|x(t)|2 +K2

1i|x(t− τi(t))|2
)

≤ |P |κd1|x(t)|2 + |P |κ
d1∑
i=1

K2
1i|x(t− τi(t))|2.

By the inequality xpyq ≤ p
p+qx

p+q + q
p+qy

p+q, for p, q, x, y >
0, we have

J3(t) ≤ 2|P |
d1∑
i=1

|f(x(t))|
∫ t

t−τ

|fi(x(s))|ds

≤ 2|P |
d1∑
i=1

(K1|x(t)|+ β1|x(t)|p)
∫ t

t−τ

|fi(x(s))|ds

≤ |P |d1K2
1τ |x(t)|2 + |P |

d1∑
i=1

K2
1i

∫ t

t−τ

|x(s)|2ds

+ 2|P |β1

d1∑
i=1

K1i(
p

p+ 1
τ |x(t)|p+1

+
1

p+ 1

∫ t

t−τ

|x(s)|p+1ds)

and

J4(t) ≤ |P |κd1
d1∑
i=1

K2
1i

∫ t

t−τ

|x(s)|2ds

+ |P |d1κτ
d1∑
i=1

K2
1i|x(t− τi(t))|2.

Substituting the three inequalities above into (29) yields

SV1(z(t), t)

≤ 2x(t)TPf(x(t)) + cκ

d1∑
i=1

K2
1i|x(t− τi(t))|2

+ J1(t) + b|x(t)|2 + 2|P |β1
pτ

p+ 1

d1∑
i=1

K1i|x(t)|p+1

+
2|P |β1

p+ 1

d1∑
i=1

K1i

∫ t

t−τ

|x(s)|p+1ds+ a

∫ t

t−τ

|x(s)|2ds

where a = |P |(1 + d1κ)
∑d1

i=1 K
2
1i, b = |P |d1(κ+ τK2

1 ),
and c = |P |(1 + d1τ). Define V (z(t), t) = V1(z(t)) + V2(t),
where

V2(t) =
1

1− κ

d∑
j=1

∫ t

t−τi(t)

gTj (x(s))PgTj (x(s))ds

+ a

∫ 0

−τ

∫ t

t+s

|x(θ)|2dθds

+
cκ

1− κ

d1∑
i=1

K2
1i

∫ t

t−τi(t)

|x(s)|2ds

+
2|P |β1

p+ 1

d1∑
i=1

K1i

∫ 0

−τ

∫ t

t+s

|x(θ)|p+1dθds.

Note that V2(t) is differentiable and z(t) is an Itô process. Then,
applying the Itô formula again yields that for t ∈ [ti, ti+1)

dV (z(t), t) = SV (z(t), t)dt+ dM(t) (30)

where

SV (z(t), t)

= SV1(z(t), t) + V̇2(t)

≤ 2x(t)TPf(x(t)) +
d∑

j=1

gTj (x(t))PgTj (x(t))

+

[
aτ + b+

κ

1− κ

(
c

d1∑
i=1

K2
1i +

d∑
i=1

σ2
1i

)]
|x(t)|2

+

(
2|P |β1τ

d1∑
i=1

K1i +
κ

1− κ

d∑
i=1

σ2
2i

)
|x(t)|p+1

≤ h1(τ)|x(t)|2 + h2(τ)|x(t)|p+1 (31)

and h1(τ) = −λ + [aτ + b+ κ
1−κ (c

∑d1

i=1 K
2
1i +

∑d
i=1 σ1i)]

and h2(τ) = −λ1 + (2|P |β1τ
∑d1

i=1 K1i +
κ

1−κ

∑d
i=1 σ2i).

Let U(t) = EV (z(t), t). Then for any k > |z(0)|, we have
from (30) that for t ∈ [ti, ti+1]

U(t ∧ ρk) = U(ti ∧ ρk) + E

∫ t∧ρk

ti∧ρk

SV (z(s), s)ds

≤ U(ti ∧ ρk)− h1(τ)E

∫ t∧ρk

ti∧ρk

|x(s)|2ds

− h2(τ)E

∫ t∧ρk

ti∧ρk

|x(s)|p+1ds

≤ U(ti−1 ∧ ρk)− h1(τ)E

∫ t∧ρk

ti−1∧ρk

|x(s)|2ds

− h2(τ)E

∫ t∧ρk

ti−1∧ρk

|x(s)|p+1ds ≤ · · ·

≤ U(0)− h1(τ)E

∫ t∧ρk

0

|x(s)|2ds

− h2(τ)E

∫ t∧ρk

0

|x(s)|p+1ds.
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This together with the definition of V (z(t), t) implies

EV1(z(t ∧ ρk)) ≤ U(t ∧ ρk) ≤ U(0).

Note that

EV1(z(t ∧ ρk))) ≥ E(V1(z(t ∧ ρk))1{ρk≤t})

≥ k2P{ρk ≤ t}.
Hence, k2P{ρk ≤ t} ≤ U(0). Then, for any t > 0,
limk→∞ P{ρk ≤ t} = 0, which together with the arbitrariness
of t implies ρ∞ = ∞ a.s. Therefore, the solution x(t) is
global. �

Theorem III.1 shows that if the delay bound τ and its deriva-
tive bound κ satisfy conditions (24), (25), and (26), then the
solution of the delay system is still global. In other words, for
the nonglobal Lipschitz stochastic system, small delays do not
affect the existence of the global solution. In what follows, we
also show that small delays also do not affect the mean square and
almost sure exponential stability of the solutions. The following
lemma is important in the almost sure convergence analysis [3].

Lemma III.1. Semimartingale Convergence Theorem: Let
A1(t) and A2(t) be two Ft-adapted increasing processes on
t ≥ 0 with A1(0) = A2(0) = 0 a.s. Let M(t) be a real-valued
local martingale with M(0) = 0 a.s. and ζ be a nonnegative F0-
measurable random variable. Assume that Y (t) is nonnegative
and

Y (t) = ζ +A1(t)−A2(t) +M(t), t ≥ 0.

If limt→∞ A1(t) < ∞ a.s., then for almost all ω ∈ Ω,

lim
t→∞Y (t) < ∞ and lim

t→∞A2(t) < ∞.

Theorem III.2: Let Assumptions III.1, III.2, and III.3 hold
with λ > 0 and λ1 > 0. If conditions (24), (25), and (26) hold,
then the trivial solution for the delay system (23) is almost surely
and mean square exponentially stable, that is, there is a constant
γ > 0, such that

lim sup
t→∞

eγs|x(s)|2 < ∞ a.s.

and

lim sup
t→∞

eγsE|x(s)|2 < ∞.

Proof: We first show that the trivial solution is almost surely
exponentially stable. Note that

V (z(t), t)

≤ (d1 + 1)|x(t)|2 + (d1 + 1)

d1∑
i=1

K2
1iτ

∫ t

t−τ

|x(u)|2du

+
|P |
1− κ

d∑
j=1

σ1i∨σ2i

(∫ t

t−τ

|x(s)|2ds+
∫ t

t−τ

|x(s)|p+1ds

)

+ aτ

∫ t

t−τ

|x(s)|2ds+ cκ

1− κ

d∑
i=1

K2
1i

∫ t

t−τ

|x(s)|2ds

+ 2|P |β1
1

p+ 1

d1∑
i=1

K1iτ

∫ t

t−τ

|x(s)|p+1ds

= C8|x(t)|2 + C9

∫ t

t−τ

|x(u)|2du+ C10

∫ t

t−τ

|x(u)|p+1du

(32)

where C8 = (d1 + 1), C9 = (d1 + 1)
∑d1

i=1 K
2
1iτ +

aτ + 1
1−κ |P |∑d

j=1 σ1i ∨ σ2i +
cκ
1−κ

∑d
i=1 K

2
1i, C10 =

1
1−κ |P |∑d

j=1 σ1i ∨ σ2i + 2|P |β1
1

p+1

∑d1

i=1 K1iτ . Applying
the Itô formula to eγtV1(z(t)) and using V (z(t), t) =
V1(z(t)) + V2(t), we have from (31) and (32) that for any
γ > 0, t ∈ [ti, ti+1]

eγtV (z(t), t)

= eγtiV (z(ti), ti) +

∫ t

ti

eγsγV (z(s), s)ds

+

∫ t

ti

eγsSV (z(s), s)ds+

∫ t

ti

eγsdM(s)

≤ eγtiV (z(ti), ti) + (C8γ + h1(τ))

∫ t

ti

eγs|x(s)|2ds

+ h2(τ)

∫ t

ti

eγs|x(s)|p+1ds

+ γC9

∫ t

ti

eγs
∫ s

s−τ

|x(u)|2duds

+ γC10

∫ t

ti

eγs
∫ s

s−τ

|x(u)|p+1duds+

∫ t

ti

eγsdM(s)

≤ · · ·

≤ V (z(0), 0) + (h1(τ) + γC8)

∫ t

0

eγs|x(s)|2ds

+ γC9

∫ t

0

eγs
∫ s

s−τ

|x(u)|2duds

+ h2(τ)

∫ t

0

eγs|x(s)|p+1ds+

∫ t

0

eγsdM(s)

+ γC10

∫ t

0

eγs
∫ s

s−τ

|x(u)|p+1duds (33)

where M(t) is defined in (28). Note that for q = 2,
p+ 1,

∫ t

0 eγs
∫ s

s−τ |x(u)|qduds ≤ τeγτ
∫ 0

−τ |x(u)|qdu+

τeγτ
∫ t

0 |x(u)|qdu. Hence, from (33), we get

eγtV1(z(t)) ≤ C4 + J1(γ)

∫ t

0

eγs|x(s)|2ds+
∫ t

0

eγsdM(s)

+ J2(γ)

∫ t

0

eγs|x(s)|p+1ds (34)

where C11 = V (z(0), 0) + γC9τe
γτ
∫ 0

−τ |x(u)|2du+ γC10

τeγτ
∫ 0

−τ |x(u)|2du, J1(γ) = h1(τ) + γC8 + γC9τe
γτ

and J2(γ) = h2(τ) + γC10τe
γτ . It can be observed

that Ji(0) = hi(τ) < 0 and J ′
i(γ) > 0 for any γ > 0,

i = 1, 2. Note that J1(
λ
C8

) > 0 and J2(
λ1

C10τ
) > 0. Hence,

there are two positive constants γ1 and γ2, such that
Ji(γi) = 0 and Ji(γ) < 0, i = 1, 2, for γ < γ∗ := γ1 ∧ γ2.
Let Y (t) = C11 +

∫ t

0 eγsdM(s). Note that for γ < γ∗,

−J1(γ)
∫ t

0 eγs|x(s)|2ds− J2(γ)
∫ t

0 eγs|x(s)|p+1ds < Y (t).
Therefore, the semimartingale convergence theorem yields
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lim supt→∞ Y (t) < ∞, a.s. and then

− J1(γ)

∫ t

0

eγs|x(s)|2ds− J2(γ)

×
∫ t

0

eγs|x(s)|p+1ds < ∞, a.s.

It is easy to see lim sups→∞ eγs|x(s)|2 < ∞ a.s., and then the
almost sure exponential stability follows.

It remains to establish the mean square exponential stability.
Let ρk be defined in Theorem III.1. Then from (34), we have
that for γ < γ∗

Eeγ(t∧ρk)V (z(t ∧ ρk), t ∧ ρk)

≤ EC11 + J1(γ)E

∫ t∧ρk

0

eγs|x(s)|2ds

+ J2(γ)E

∫ t∧ρk

0

eγs|x(s)|p+1ds.

Noting that ρ∞ = ∞ a.s. was proved in Theorem III.1, applying
Fatou’s lemma yields −J1(γ)

∫ t

0 eγsE|x(s)|2ds ≤ EC11, ∀ t >
0. This produces the mean square exponential stability. �

Remark III.2: In Theorem III.1, the delay term in the drift
is assumed to be Lipschitz. To date, we have not found a way
to handle non-Lipschitz delay terms like dx(t) = (−μx(t)−
x(t− τ)3)dt+ σx(t)dw(t). The previous work [46] tells us that
the non-Lipschitz delay term may not affect the boundedness
of the solution in any finite time. But it is still unclear how
the non-Lipschitz delay term affects the stability property for
stochastic systems.

From Theorem III.2, we can obtain the following delay toler-
ance when the non-Lipschitz term f0(x) vanishes.

Corollary III.1: Let Assumptions III.1, III.2, and III.3 hold
with λ > 0 and β = β1 = σ2i = 0. If conditions (24) and (25)
hold, then delay system (23) is stable for small delays {τi(t)}
with small derivative. In addition, delay system (23) is also
almost surely and mean square exponentially stable.

Especially, if the delay is fixed, and the delay system has the
following form

dx(t) = f(x(t− τ))dt+

d∑
i=1

gi(x(t− τ))dwi(t) (35)

we have the following corollary.
Corollary III.2: Assume that there exist a function V (x) ∈

C2(Rn;R+) and constants p = 2, {ci}4i=1 satisfying conditions
1), 2), and Vxx(x) ≡ P for certain matrix P > 0. If 2|P |K2

1τ <
λ, then the delay system (35) is almost surely and mean square
exponentially stable.

Remark III.3: Li and Mao [47] recently contributed an impor-
tant work on delay feedback stabilization of hybrid stochastic
system. If we consider the degenerate system like dx(t) =
u(t)dt+ x(t)dw(t)withu(t) = −x(t− τ), our delay tolerance
results provide a large delay bound since the stability rule (Rule
3.5 in [47]) requires τ < 1/4, but our Corollary III.2 only
requires τ < 1/2.

Now, we continue to consider the stability tolerance of
(10) and (12) with θi(xt) = x(t− τi) based on Theorem III.1.
In fact, from Theorem III.1, we can easily obtain that the
mean square stable system (10) can tolerate a fixed delay
τ < 2μ−σ2

2μ2 , such that the delay system (12) is still mean square

exponentially stable. We can see that if μ >
√
2, then

√
4σ4+2μ2( 2μ−σ2

μ2+σ2 )2−2σ2

μ2 < 2μ−σ2

2μ2 . That is, Corollary III.2 can

provide a large delay bound for the case μ >
√
2. But for some

special cases, we can obtain a tight delay bound. To this end, we
consider p = 2 in view of characteristic equation. By Itô formula
for (12), we have

dE|x(t)|2
dt

= −2μE[x(t)x(t− τ1)]ds+ σ2E|x(t− τ2)|2.
Let Z(t, s) = E[x(t)x(s)]. Then we have

Ż(t, t) = −2μZ(t, t− τ1) + σ2Z(t− τ2, t− τ2). (36)

To examine the stability of the equation above, we assume that
its solution has the form

Z(t, s) = eγteγs. (37)

We now examine the conditions on γ, such that (37) is indeed
a solution to (36). In fact, substituting (37) into (36) admits the
following characteristic equation

2γ = −2μe−γτ1 + σ2e−2γτ2 . (38)

That is, the delay equation (12) with θi(xt) = x(t− τi) is
mean square exponentially stable if and only if all the infinitely
many characteristic roots of the characteristic equation (38) have
negative real parts. Especially, a) if τ1 = 2τ2, by solving the
characteristic equation (38), we know that the trivial solution
of (10) is mean square exponentially stable if and only if
0 < (μ− σ2

2 )τ1 < π
2 . That is, the mean square stable stochastic

system (10) can tolerate the delay τ1 < 0.5π

μ−σ2

2

. b) if τ1 = 0, then

solving (38) yields that the mean square stable stochastic system
(10) can tolerate any bounded delay τ2 in the diffusion.

The delay that the linear system (10) can tolerate established
above is better than that in Theorem II.1. But the characteristic
equation above cannot be used for the nonlinear system and the
general pth moment stability. So it is still an important direction
to find a refined delay tolerance criterion in the future.

Remark III.4: Razumikhin theorem is another important
technique in examining the stability of stochastic delay systems
and was developed in [15]–[17] and [48] for different type
stochastic systems. In this article, delay tolerance criteria are
discussed based on Lyapunov function and functional because
these issues are a class of delay-term dominated and delay-
dependent stability, which cannot be solved by Razumikhin
methods directly. The skills developed in this article would be
helpful for us to extend output feedback control studied in [49]
to delay output feedback control.

IV. EXTENSIONS TO CONSENSUS AND TRACKING CONTROL

OF MULTIAGENT SYSTEMS UNDER MULTIPLICATIVE NOISES

AND NONUNIFORM DELAYS

In this section, we aim to use the delay tolerance idea to study
the multiagent consensus and tracking under multiplicative
noises and time-varying nonuniform delays. This is an important
extension from the case with the uniform fixed time delays in our
previous works [30], [50] to the case with time-varying uninform
time delays.

We consider N agents with the information flow structures
among different agents being modeled as an undirected graph
G = {V, E ,A}, whereV = {1, 2, . . ., N} is the set of nodes with
i representing the ith agent,E denotes the set of undirected edges,
andA = [aij ]∈RN×N is the adjacency matrix ofG with element
aij = 1 or 0 indicating whether or not there is an information
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flow from agent j to agent i directly. The Laplacian matrix of G
is defined asL = D −A, whereD = diag(deg1, . . ., degN ) and
degi =

∑N
j=1 aij , i = 1, . . . , N. Note that G is undirected. We

denote Q̃ = [φ2, . . ., φN ], where φi is the unit eigenvector of L
associated with the eigenvalueλi = λi(L), that is,φT

i L = λiφ
T
i ,

‖φi‖ = 1, i = 2, . . ., N . Then Q = ( 1√
N
1N , Q̃) is an orthogo-

nal matrix. Let Λ := diag(λ2, λ3, . . . , λN ).
We consider a network of agents with the first-order dynamics

ẋi(t) = ui(t), i = 1, 2, . . ., N, t ∈ R+ (39)

where xi(t) ∈ Rn denotes the state of i’s agent and ui(t) ∈
Rn is the corresponding input control to be designed. Denote
x(t) = [xT

1 (t), . . ., x
T
N (t)]T and u(t) = [uT

1 (t), . . ., u
T
N (t)]T .

We consider that the measurements of relative states by
agent i have the following form zji(t) = Δxji(t− τji(t)) +
gji(Δxji(t− τji(t)))ξji(t), j ∈ Ni, where Δxji(t) = xj(t)−
xi(t), τji(t) ∈ [0, τ ] is the time-varying delay depending the
communication channel and satisfying τji(t) = τij(t), Ni de-
notes the neighbors of the ith agent, ξji(t) ∈ R denotes the
measurement noises and gji is the noise intensity. We need the
following assumptions.

Assumption IV.1: The noise process ξji(t) ∈ R satisfies∫ t

0 ξji(s)ds = wji(t), t ≥ 0, j ∈ Ni, i = 1, 2, . . . , N , where
{wji(t), j ∈ Ni, i = 1, 2, . . . , N} are scalar independent Brow-
nian motions.

Assumption IV.2: For each (j, i), gji(0) = 0 and there exists a
positive constant σji, such that |gji(x)− gji(y)| ≤ σji|x− y|,
for all x, y ∈ Rn.

Based on the measurement zji(t), we aim to find a control u,
such that the multiagent system (39) achieves the mean square
consensus or almost sure consensus, whose definitions are as
follows.

Definition IV.1: We say that the control u(t) solves mean
square (or almost sure) weak consensus if it makes the agents
have the property that for any initial data ϕ and all distinct i, j ∈
V , limt→∞ E|xi(t)− xj(t)|2 = 0 [or limt→∞ |xi(t)− xj(t)| =
0 almost surely (a.s.)]. If, in addition, there is a random vec-
tor x∗ ∈ Rn, such that E‖x∗‖2 < ∞ and limt→∞ E‖xi(t)−
x∗‖2 = 0 (or P{‖x∗‖ < ∞} = 1 and limt→∞ ‖xi(t)− x∗‖ =
0, a.s.), i = 1, 2, . . ., N , then we say that the control u(t) solves
mean square (or almost sure) strong consensus.

We consider the following consensus control

ui(t) = uK
i (t) = K

∑
j∈Ni

zji(t), i = 1, 2, . . ., N (40)

where K is the symmetrical control gain matrix to be designed.
Consensus control under undirected topologies. Under con-

trol (40), system (39) has the form dxi(t) =
∑N

j=1 aijΔxji(t−
τji(t))dt+

∑N
j=1 aijgji(Δxji(t− τji(t)))dwji(t), which can

be rewritten as

dx(t) = −
r∑

k=1

(Lk ⊗K)x(t− τk(t))dt

+

N∑
i,j=1

[ηN,i ⊗Kgji(Δxji(t− τji(t)))]dwji(t)

(41)

where r ≤ N(N − 1)/2, τk(·) ∈ {τij(·) : i, j = 1, . . . , N} for
k = 1, . . . r, ηN,i denotes the N -dimensional column vector
with the ith element being 1 and others being zero, and Lk =

[lkij ] ∈ RN×N with

lkji =

⎧⎨⎩
−aij , j �= i, τk(·) = τij(·)
0, j �= i, τk(·) �= τij(·)
−∑p �=i lkip, j = i.

It can be observed that Lk is symmetric and
∑r

k=1 Lk = L
since τij(·) = τji(·). Moreover, we can see that each row sum
of the matrix Lk is zero, that is, 1TNLk = 0 for all k = 1, . . . , N .
Define δ(t) = [(IN − JN )⊗ In]x(t)δ̃(t) = (Q−1 ⊗ In)δ(t) =

[δ̃T1 (t), . . . , δ̃
T
N (t)]T , and δ(t) = [δ̃T2 (t), . . . , δ̃

T
N (t)]T , δ̃i(t) ∈

Rn. Then, by the definition of Q−1, we have δ̃1(t) = 1√
N
(1T

N ⊗
In)δ(t) =

1√
N
(1T

N (IN − JN )⊗ In)y(t) = 0 and

dδ(t) = −
r∑

k=1

(Λk ⊗K)δ(t− τk(t))dt

+
N∑

i,j=1

Gij(t− τij(t))dwji(t) (42)

where Λk = Q̃TLkQ̃, and Gij(t) = aijQ̃
T (IN − JN )ηN,i ⊗

(Kgji(Δxji(t))) with ηN,i denoting the N -dimensional col-
umn vector with the ith element being 1 and others being
zero. It is easy to see that

∑r
k=1 Λk = Λ. Note that δi(t) =

xi −
∑N

k=1 xk(t)/N , i = 1, . . . , N . Hence, mean square (or
almost sure) weak consensus equals limt→∞ E|δ(t)|2 = 0
(or limt→∞ |δ(t)| = 0, a.s.) for any initial data. Note that
|Gji(t)|2 ≤ N−1

N |K|2σ2
jiaij |δj(t)− δi(t)|2. Considering the

Lyapunov function V (x) = |x|2, we obtain for τij(t) = 0

LV (δ(t)) = 2δ(t)T (Λ⊗ KT +K

2
)δ(t) +

N∑
i,j=1

|Gij(t)|2

≤ − 2λmin(ΦK)|δ̄(t)|2 (43)

where ΦK = Λ⊗ K+KT

2 − N−1
N |K|2σ̄2(Λ⊗ In), σ̄ =

maxi,j σji. That is, if ΦK > 0, then the system (42) without
time delays is mean square and almost surely exponentially
stable [3]. And then the control u(t) defined by (40)
solves mean square and almost sure weak consensus for
multiagent systems without time delays, which was also proved
in [36]. Note that |Gji(t)|2 ≤ N−1

N |K|2σ2
jiaij |δ(t)|2. Let

C12(τ) = |K|2√2(τ2r
∑r

i=1 |Λi|2 + τN(N − 1)
∑N

i,j=1 aij

σ2
ji)

1/2(
∑r

i=1 |Λi|+ N−1
N |K|∑N

i,j=1 aijσ
2
ji). By Corollary

II.1, if

C12(τ) < 2λmin(ΦK) (44)

delay system (42) is mean square exponentially stable, and then
the control u(t) defined by (40) solves mean square weak con-
sensus with an exponential rate. Note that all the coefficients in
(42) are Lipschitz continuous. Then the mean square exponential
stability implies the almost sure exponential stability. That is,
under condition (44), the control u(t) defined by (40) also solves
almost sure weak consensus with an exponential rate. Hence,
from Lemma 4.1 in [30], we have the following theorem.

Theorem IV.1: Let Assumptions IV.1 and IV.2 hold. If (44)
holds, then the control u(t) defined by (40) solves mean square
and almost sure strong consensus.
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From (44), we can see that if the delay-free multiagent system
with the conditionΦK > 0 can achieve the mean square consen-
sus, then a small delay is allowed since the left side of (44) tends
to zero as τ → 0. That is, if the time-delay τ is small and satisfies
(44), we do not have to change the control gain K designed for
the delay-free case. Then one may ask how about the case with
large time delays. In fact, for large delays, we can adjust the
control gain to guarantee the mean square consensus. To see it
clearly, we choose the control gain K = kIn with k > 0, and
then (44) can be rewritten as

kb1

⎛⎝ r∑
i=1

|Λi|+ N − 1

N
k

N∑
i,j=1

aijσ
2
ji

⎞⎠
< 2λ2

(
1− N − 1

N
kσ̄2

)
(45)

where b1 =
√
2(τ2r

∑r
i=1 |Λi|2 + τN(N − 1)

∑N
i,j=1

aijσ
2
ji)

1/2. Let a = N−1
N b1

∑N
i,j=1 aijσ

2
ji, b = b1

∑r
i=1 |Λi|+

N−1
N λ2σ̄

2. Then (45) can be guaranteed by the choice k ∈ (0, k̄),

where k̄ =
−b+

√
b2+8aλ2

2a .
Tracking Control Under Leader-Following Topologies. We

aim to design the control, such that all the N agents can track
a leader denoted by 0. The state of the leader is assumed to
be a constant denoted by x0. For the ith follower, the dynamic
is described by (39) with ui(t) defined by (40). Note that this
is different from the above since for each agent i, its neighbor
set Ni may contain the leader 0. Assumptions IV.1 and IV.2
are also deemed to include the leader 0. Considering the in-
formation flow from the leader to the followers, we denote the
topology graph by G̃ = {Ṽ , Ã} with Ṽ = {0, 1, 2, . . . , N} and

Ã = (
0 01×N

a0 A ) ∈ R(N+1)×(N+1),whereA = [aij ] ∈ RN×N ,

a0 = [a10, . . . , aN0]
T , ai0 = 1 if 0 ∈ Ni, otherwise ai0 = 0.

Let B = diag(a10, . . . , aN0) and Bi = diag(0, . . . , ai0, . . .).
We use G = (V,A) to represent the subgraph formed by the
N followers, where V = Ṽ \ {0}.

Definition IV.2: We say that the control u(t) solves mean
square (or almost sure) tracking problem if it makes the N + 1
agents have the property that for any initial data ϕ and all i ∈ V ,
limt→∞ E|xi(t)− x0|2 = 0 (or limt→∞ |xi(t)− x0| = 0 a.s.).

We impose the following assumption on the graph G̃ and its
subgraph G.

Assumption IV.3: Assume that the graph G̃ contains a span-
ning tree and its subgraph G is undirected.

Let L0 = L+B. Under Assumption IV.3, we know that L0

is symmetric, and all eigenvalues of the matrix L0 are positive
([51]), denoted by {λ0i}Ni=1. Hence, there exists an unitary ma-
trixΦ, such thatΦTL0Φ = diag(λ01, . . . , λ0N ) =: Λ0. Without
loss of generality, we assume 0 < λ01 ≤ . . . ≤ λ0N .

Let δi(t) = xi(t)− x0 for i = 1, . . . , N . Define δ(t) =
[δT1 (t), . . . , δ

T
N (t)]T . Let δ(t) = ΦT δ(t), Φ(i) = ΦT ηN,i.

Then we get dδi(t) =
∑N

j=0 aijΔδji(t− τji(t))dt+∑N
j=0 aijgji(Δδji(t− τji(t)))dwji(t). Similarly to (41),

we have

dδ(t) = −
r+N∑
k=1

(Lk ⊗K)δ(t− τk(t))dt

+
N∑
i=1

N∑
j=0

Gij(t)dwji(t) (46)

where Lk for k = 1, . . . , r are defined above, Lr+i =
a0iηN,i, τr+i(t) = τi0(t), i = 1, . . . , N , and Gij(t) =
aij [ηN,i ⊗Kgji(Δδji(t− τji(t)))]. Hence, mean square
(or almost sure) tracking equals limt→∞ E|δ(t)|2 = 0 (or
limt→∞ |δ(t)| = 0, a.s.) for any initial data. It can be proved
that

∑r+N
k=1 Lk = L+B, and

N∑
i=1

N∑
j=0

aij |ηN,i ⊗Kgji(Δδji(t))|2

≤ |K|2
N∑
i=1

N∑
j=0

aijσ
2
ji|Δδji(t)|2

≤ |K|2σ̄2δ(t)T ((L+B)⊗ In)δ(t).

Considering the Lyapunov function V (x) = |x|2, we obtain for
τij(t) = 0

LV (δ(t)) = 2δ(t)T ((L+B)⊗K)δ(t) +
N∑

i,j=1

|Gij(t)|2

≤ − 2λmin(ΦK)|δ̄(t)|2

where ΦK = (L+B)⊗ K+KT

2 − |K|2σ̄2((L+B)⊗ In).
That is, if ΦK > 0, then the system (46) without
time delays is mean square exponentially stable. And
then the control u(t) solves mean square tracking
for the first-order multiagent systems without time
delays. Note that |Gji(t)|2 ≤ |K|2σ2

jiaij |δ(t− τji(t))|2.
Let C13(τ) = |K|√2τ(τr

∑r+N
i=1 |Li|2 +N (N +

1)
∑N

i=1

∑N
j=0 aijσ

2
ji)

1/2(
∑r+N

i=1 |Li|+ |K|∑N
i=1

∑N
j=0 aij

σ2
ji). By Corollary II.1, if

C13(τ) < 2λmin(ΦK), (47)

then the delay system (46) is mean square exponentially stable,
and then the protocol u(t) solves mean square tracking.

Theorem IV.2: Let Assumptions IV.1 and IV.2 hold. If (47)
holds, then the control u(t) defined by (40) solves mean square
and almost sure tracking.

Similarly, we can choose the control gain K = kIn with k >
0, and then (47) can be rewritten as

kb1

⎛⎝r+N∑
i=1

|Li|+ k

N∑
i=1

N∑
j=0

aijσ
2
ji

⎞⎠ < 2λ01(1− kσ̄2), (48)

where b1 =
√
2τ(τr

∑r
i=1 |Li|2 +N(N + 1)

∑N
i,j=1 aij

σ2
ji)

1/2. Let a = b1
∑N

i,j=1 aijσ
2
ji, b = b1

∑r
i=1 |Li|+ λ01σ̄

2.
Then (48) can be guaranteed by the choice k ∈ (0, k̄), where

k̄ =
−b+

√
b2+8aλ2

2a .
Remark IV.1: Especially, if the leader-following topology

is a star, then the corresponding closed-loop system is de-
coupled, that is, dδi(t) = −kδi(t− τ0i(t))dt+ kg0i(−δ0i(t−
τ0i(t)))dw0i(t). Applying Corollary II.1, we obtain that
the above system is mean square exponentially stable if
k
√
2τ2 + 4τ σ̄2(1 + kσ̄2) < 2− kσ̄2.

Let us consider a scalar four-agent example under the
topology graph G = {V, E ,A}, where V = {1, 2, 3, 4}, E =
{(1, 2), (2, 1), (2, 3), (3, 4), (4, 3), (3, 2)} and A = [aij ]4×4

with a12 = a21 = a23 = a32 = a34 = a43 = 1 and other being
zero. Moreover, we can obtain λ2 = 0.5858, λ3 = 2, and λ4 =
3.4142. The initial state is given by x(0) = [−7, 4, 3,−8]T .
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Fig. 1. Asymptotic behaviors of the four agents: k = 0.05 and τ = 0.

Fig. 2. Mean square errors of xi(t)− x1(t)| : k = 0.05 and τ = 0.

Assume fji(x) = σji with σji = 0.5, i, j = 1, 2, 3, 4, σ̄ =
maxi,j σji.

For the delay-free case, we choose k = 0.05, and then it can
be seen that 0.01875 = 2N−1

N kσ̄2 < 2λ2 = 0.1716. That is, Φk

defined in (43) is positive definite. Hence, the four agents achieve
the mean square and almost sure strong consensus. The almost
sure strong consensus is revealed in Fig. 1 and the mean square
weak consensus is simulated in Fig. 2 by taking 103 samples to
approximate E|xi(t)− x1(t)|2.

Then we will reveal that a small delay is tolerated for
stochastic consensus. Let τ1 = τ12 = τ21 = 0.2, τ2 = τ23 =
τ32 = 0.1 and τ2 = τ34 = τ43 = 0.15. The initial data is x(t) =
[−2, 1, 2,−3]T for t ∈ [−τ, 0], τ = maxi τi. In this case, r = 3

L1 =

⎡⎢⎢⎣
1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎦ , L2 =

⎡⎢⎢⎣
0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

⎤⎥⎥⎦
and

L3 =

⎡⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1

⎤⎥⎥⎦ .

Then it can be seen that 0.9614 = kb1(
∑r

i=1 |Λi|+
N−1
N k

∑N
i,j=1 σ

2
ji) < 2λ2(1− N−1

N kσ̄2) = 1.1606. That is,

Fig. 3. Asymptotic behaviors of the four agents: k = 0.05, τ1 = 0.2,
τ1 = 0.1, τ1 = 0.15.

Fig. 4. Mean square errors of |xi(t)− x1(t)| : k = 0.05, τ1 = 0.2, τ1 =
0.1, τ1 = 0.15.

condition (45) holds. Hence, by Theorem IV.1, almost sure and
mean square strong consensus can be achieved. In fact, Fig. 3
shows that all the agents will tend to a common value. That is,
the almost sure strong consensus is solved. Similarly, taking 103

samples to approximate E|xi(t)− x1(t)|2 will produce Fig. 4,
which depicts the mean square weak consensus.

V. CONCLUSION

This article establishes an important “robustness” type result,
namely, delay tolerance for stable stochastic systems under dif-
ferent Lipschitz type conditions. Under global Lipschitz condi-
tions, we first show that if the delay-free stochastic system is pth
moment exponentially stable, the corresponding stochastic delay
version is still pth moment exponentially stable for sufficiently
small delay. Then we prove that if the moment exponential
stability for delay-free system is based on Lyapunov conditions,
a large delay is allowed for the delay system to be moment
exponentially stable. Without the global Lipschitz conditions,
we studied the delay tolerance issues for mean square stable
stochastic systems under a class of one-sided linear growth
condition on the drift and polynomial growth condition on the
diffusion. We also considered applications of delay tolerance
to the control design of multiagent systems with multiplicative
noises and nonuniform delays.

The results obtained can be used to examine the stochastic
systems with G-Brownians and improve the delay bound as in

Authorized licensed use limited to: East China Normal University. Downloaded on May 28,2021 at 02:32:25 UTC from IEEE Xplore.  Restrictions apply. 



2618 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 6, JUNE 2021

Ren et al. [52]. It can also be extended to the discrete-time case.
Based on this article, many related issues can be dealt with. For
example, the delay tolerance for the boundedness and ergodicity
of stochastic systems.
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